Skip to main content
Log in

Effects of Cell Network Structure on the Strength of Additively Manufactured Stainless Steels

  • Published:
Metals and Materials International Aims and scope Submit manuscript

This article has been updated

Abstract

The rapid melting and solidification cycle in additive manufacturing creates a non-equilibrium environment that induces metastable microstructures. These metastable microstructures include solute heterogeneity, dislocation cell structure and nano-sized precipitation, which contributes to the strength of additively manufactured alloys. Because the presence of metastable microstructure contributes to the mechanical property enhancement of additively manufactured alloy, quantification and estimation of strength by metastable microstructure becomes important issue. In this study, the role of dislocation cell structure on the mechanical property of additively manufactured stainless steels was investigated. The evolved cell networks not only interrupted dislocation gliding, but also acted as crack propagation paths during plastic deformation. The finer cell networks found in the additively manufacture 304L stainless steels induced more interactions with dislocations than those found in the additively manufacture 316L stainless steels, and that is related to the higher strength during tensile test. This result demonstrates the dislocation cell structure is a main strengthening mechanism for additively manufactured materials and the modified Hall–Petch hardening model successfully estimate the strengthening by cell boundaries.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

Change history

  • 08 July 2021

    The Graphic Abstract has been included

References

  1. M.K. Thompson, G. Moroni, T. Vaneker, G. Fadel, R.I. Campbell, I. Gibson, A. Bernard, J. Schulz, P. Graf, B. Ahuja, F. Martina, CIRP Ann. Manuf. Techn. 65, 737 (2016)

    Article  Google Scholar 

  2. J.J. Lewandowski, M. Seifi, Annu. Rev. Mater. Res. 46, 151 (2016)

    Article  CAS  Google Scholar 

  3. D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Mater. 117, 371 (2016)

    Article  CAS  Google Scholar 

  4. L.E. Murr, S.M. Gaytan, D.A. Ramiraz, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, R.B. Wicker, J. Mater. Sci. Technol. 28, 1 (2012)

    Article  CAS  Google Scholar 

  5. Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, T. Zhu, Nat. Mater. 17, 63 (2018)

    Article  CAS  Google Scholar 

  6. L. Liu, Q. Ding, Y. Zhong, J. Zou, J. Wu, Y.-L. Chiu, J. Li, Z. Zhang, Q. Yu, Z. Shen, Mater. Today 21, 354 (2018)

    Article  CAS  Google Scholar 

  7. P. Kürnsteiner, M.B. Wilms, A. Weisheit, P. Barriobero-Vila, E.A. Jägle, D. Raabe, Acta Mater. 129, 52 (2017)

    Article  CAS  Google Scholar 

  8. D.C. Hofmann, J. Kolodziejska, S. Roberts, R. Otis, R.P. Dillon, J.-O. Suh, Z.-K. Liu, J.-P. Borgonia, J. Mater. Res. 29, 1899 (2014)

    Article  CAS  Google Scholar 

  9. G.M. Karthik, H.S. Kim, Met. Mater. Int. 27, 1 (2021)

    Article  CAS  Google Scholar 

  10. J.G. Kim, J.M. Park, J.B. Seol, J. Choe, J.-H. Yu, S. Yang, H.S. Kim, Mater. Sci. Eng. A 773, 138726 (2020)

    Article  CAS  Google Scholar 

  11. J. Suryawanshi, K.G. Prashanth, U. Ramamurty, Mater. Sci. Eng. A 696, 113 (2017)

    Article  CAS  Google Scholar 

  12. T.R. Smith, J.D. Sugar, C.S. Marchi, J.M. Schoenung, Acta Mater. 164, 728 (2019)

    Article  CAS  Google Scholar 

  13. T. Kurzynowski, K. Gruber, W. Stopyra, B. Kuźnicka, E. Chlebus, Mater. Sci. Eng. A 718, 64 (2018)

    Article  CAS  Google Scholar 

  14. Z. Wang, T.A. Palmer, A.M. Beese, Acta Mater. 110, 226 (2016)

    Article  CAS  Google Scholar 

  15. J.R. Davis, ASM Specialty Handbook: Stainless Steels (American Society for Metals, Materials Park, OH, 1994)

    Google Scholar 

  16. Y. Zhong, L. Liu, S. Wikman, D. Cui, Z. Shen, J. Nucl. Mater. 470, 170 (2016)

    Article  CAS  Google Scholar 

  17. K. Saeidi, X. Gao, F. Lofaj, L. Kvetkova, Z.J. Shen, J. Alloy. Compd. 633, 463 (2015)

    Article  CAS  Google Scholar 

  18. D. Sill, S.K. Varma, Metall. Trans. A 24, 1153 (1993)

    Article  Google Scholar 

  19. B.P. Kashyap, K. Tangri, Acta Metall. Mater. 43, 3971 (1995)

    Article  CAS  Google Scholar 

  20. Y.H. Jo, S. Jung, W.M. Choi, S.S. Sohn, H.S. Kim, B.J. Lee, N.J. Kim, S. Lee, Nat. Commun. 8, 15719 (2017)

    Article  CAS  Google Scholar 

  21. J.B. Seol, J.W. Bae, J.G. Kim, H. Sung, Z. Li, H.H. Lee, S.H. Shim, W.-S. Ko, S.I. Hong, H.S. Kim, Acta Mater. 194, 366 (2020)

    Article  CAS  Google Scholar 

  22. J.I. Yoon, J.G. Kim, J.M. Jung, D.J. Lee, H.J. Jeong, M. Shahbaz, S. Lee, H.S. Kim, Korean J. Met. Mater. 54, 231 (2016)

    CAS  Google Scholar 

  23. S. Zaefferer, Microsc. Microanal. 23, 566 (2017)

    Article  Google Scholar 

  24. D. Peckner, I.M. Bernstein, Handbook of Stainless Steels (McGraw-Hill Book Company, New York, NY, 1977)

    Google Scholar 

  25. P.D. Harvey, Engineering Properties of Steels (American Society for Metals, Metals Park, OH, 1982)

    Google Scholar 

  26. Z.G. Zhu, Q.B. Nguyen, F.L. Ng, X.H. An, X.Z. Liao, P.K. Liaw, S.M.L. Nai, J. Wei, Scr. Mater. 154, 20 (2018)

    Article  CAS  Google Scholar 

  27. M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Mater. Sci. Eng. A 527, 2738 (2010)

    Article  CAS  Google Scholar 

  28. Z.H. Xiong, S.L. Liu, S.F. Li, Y. Shi, Y.F. Yang, R.D.K. Misra, Mater. Sci. Eng. A 740–741, 148 (2019)

    Article  CAS  Google Scholar 

  29. Q. Chao, V. Cruz, S. Thomas, N. Birbilis, P. Collins, A. Taylor, P.D. Hodgson, D. Fabijanic, Scr. Mater. 141, 94 (2017)

    Article  CAS  Google Scholar 

  30. Y.-B. Kang, H.S. Kim, J. Zhang, H.-G. Lee, J. Phys. Chem. Solids 66, 219 (2005)

    Article  CAS  Google Scholar 

  31. H.J.T. Ellingham, J. Soc. Chem. Ind. 63, 125 (1944)

    Article  CAS  Google Scholar 

  32. P. Guo, B. Zou, C. Huang, H. Gao, J. Mater. Process. Technol. 240, 12 (2017)

    Article  CAS  Google Scholar 

  33. T. Umeda, T. Okane, Sci. Technol. Adv. Mater. 2, 231 (2001)

    Article  CAS  Google Scholar 

  34. Z. Sun, X. Tan, S.B. Tor, W.Y. Yeong, Mater. Des. 104, 197 (2016)

    Article  CAS  Google Scholar 

  35. M. Zietala, T. Durejko, M. Polanski, I. Kunce, T. Plocinski, W. Zielinski, M. Lazinska, W. Stepniowski, T. Czujko, K.J. Kurzydlowski, Z. Bojar, Mater. Sci. Eng. A 677, 1 (2016)

    Article  CAS  Google Scholar 

  36. M. Laleh, A.E. Hughes, W. Xu, N. Haghdadi, K. Wang, P. Cizek, I. Gibson, M.Y. Tan, Corros. Sci. 161, 108189 (2019)

  37. M. Ghayoor, K. Lee, Y. He, C.-H. Chang, B.K. Paul, S. Pasebani, Addit. Manufac. 32, 101011 (2020)

    Article  CAS  Google Scholar 

  38. L. Han, Q. Liu, J. Gu, Chin. J. Mech. Eng. 32, 81 (2019)

    Article  CAS  Google Scholar 

  39. A. Zhang, A. Misra, H. Wang, T.D. Chen, J.G. Swadener, J.D. Embury, H. Kung, R.G. Hoagland, M. Nastasi, J. Mater. Res. 18, 1600 (2003)

    Article  CAS  Google Scholar 

  40. F. Yang, Y. Pan, F. Yuan, Y. Zhu, X. Wu, Mater. Res. Lett. 4, 145 (2016)

    Article  CAS  Google Scholar 

  41. X. Wu, M. Yang, F. Yuan, G. Wu, Y. Wei, X. Huang, Y. Zhu, P. Natl. Acad. Sci. USA 112, 14501 (2015)

    Article  CAS  Google Scholar 

  42. J.G. Kim, M.J. Jang, H.K. Park, K.-G. Chin, S. Lee, H.S. Kim, Met. Mater. Int. 25, 912 (2019)

    Article  CAS  Google Scholar 

  43. Y. Matsuoka, T. Iwasaki, N. Kakada, T. Tsuchiyama, S. Takaki, ISIJ Int. 53, 1224 (2013)

    Article  CAS  Google Scholar 

  44. A.M. Rausch, M. Markl, C. Körner, Comput. Math. Appl. 78, 2351 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2017R1A2A1A18069427). This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020R1A4A3079417). The Technology Innovation Program (Alchemist Project, 20012196, Al based supercritical materials discovery) also funded by the Ministry of Trade, Industry & Energy, Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung Gi Kim or Hyoung Seop Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.G., Seol, J.B., Park, J.M. et al. Effects of Cell Network Structure on the Strength of Additively Manufactured Stainless Steels. Met. Mater. Int. 27, 2614–2622 (2021). https://doi.org/10.1007/s12540-021-00991-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-00991-y

Keywords

Navigation