Skip to main content
Log in

Bauschinger Effect or Kinematic Hardening: Bridging Microstructure and Continuum Mechanics

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this article, we present our take on modeling the Bauschinger effect. The main goal is to correlate the microstructure-based modeling developed for uniaxial tension/compression deformation and the tensorial modeling approach of the continuum mechanics. After a brief historial review, we present a microstructure-related model that was proven to provide an adequate description of the Bauschinger effect in terms of kinematic and isotropic strain hardening. Its generalization to the case of multiaxial loading is then formulated in terms of a continuum mechanics model. The full tensorial model developed is now being offered to the solid mechanics and physical metallurgy communities as an advanced modeling tool.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Bauschinger, Met. Civ. NF 27, 289 (1881)

    Google Scholar 

  2. J. Bauschinger, Mittheilungen aus dem Mechanisch-Technischen Laboratorium der Königlichen, vol. 13 (Technical University, Munich, 1886), p. 31

  3. G. Masing, in Wissenschaftliche Veröffentlichungen aus dem Siemens-Konzern, ed. by C.D. Harries (Springer, Berlin, Heidelberg, 1923), pp. 231–239

    Article  Google Scholar 

  4. E. Heyn, A few questions from the field of metal testing. Metall. u. Erz. 15(411–422), 436–441 (1918)

    Google Scholar 

  5. E. Orowan, Discussion on Internal Stresses, in Symp. Internal Stresses in Metals and Alloys (The Institute of Metals, London, 1948), pp. 451–453.

  6. M.E. Kassner, P. Geantil, L.E. Levine, B.C. Larson, Mater. Sci. Forum 604–605, 39 (2009). https://doi.org/10.4028/www.scientific.net/MSF.604-605.39

    Article  Google Scholar 

  7. Z. Li, P. La, J. Sheng, Y. Shi, X. Zhou, Q. Meng, Met. Mater. Int. 27, 2562 (2021). https://doi.org/10.1007/s12540-020-00662-4

    Article  CAS  Google Scholar 

  8. J.G. Kim, M.J. Jang, H.K. Park, K.-G. Chin, S. Lee, H.S. Kim, Met. Mater. Int. 25, 912 (2019). https://doi.org/10.1007/s12540-019-00258-7

    Article  CAS  Google Scholar 

  9. F. He, Z. Yang, S. Liu, D. Chen, W. Lin, T. Yang, D. Wei, Z. Wang, J. Wang, J. Kai, Int. J. Plasticity 144, 103022 (2021). https://doi.org/10.1016/j.ijplas.2021.103022

    Article  CAS  Google Scholar 

  10. Y. Zhu, K. Ameyama, P.M. Anderson, I.J. Beyerlein, H. Gao, H.S. Kim, E. Lavernia, S. Mathaudhu, H. Mughrabi, R.O. Ritchie, N. Tsuji, X. Zhang, X. Wu, Mater. Res. Lett. 9, 1 (2021). https://doi.org/10.1080/21663831.2020.1796836

    Article  CAS  Google Scholar 

  11. J.G. Kim, J.W. Bae, J.M. Park, W. Woo, S. Harjo, S. Lee, H.S. Kim, Met. Mater. Int. 27, 376 (2021). https://doi.org/10.1007/s12540-020-00657-1

    Article  CAS  Google Scholar 

  12. W. Lu, P. Cao, C. Zhao, Y. Song, C. Tang, Met. Mater. Int. 27, 4397 (2021). https://doi.org/10.1007/s12540-020-00853-z

    Article  CAS  Google Scholar 

  13. H.-W. Son, J.-C. Lee, H.S. Park, S.-K. Hyun, Met. Mater. Int. 27, 4894 (2021). https://doi.org/10.1007/s12540-020-00677-x

    Article  CAS  Google Scholar 

  14. J. Moon, J.M. Park, J.W. Bae, N. Kang, J. Oh, H. Shin, H.S. Kim, Scripta Mater. 186, 24 (2020). https://doi.org/10.1016/j.scriptamat.2020.04.044

    Article  CAS  Google Scholar 

  15. S.C. Song, J. Moon, H.S. Kim, Mater. Sci. Eng. A 799, 140275 (2021). https://doi.org/10.1016/j.msea.2020.140275

    Article  CAS  Google Scholar 

  16. J. Li, W. Lu, S. Chen, C. Liu, Int. J. Plasticity 126, 102626 (2020). https://doi.org/10.1016/j.ijplas.2019.11.005

    Article  CAS  Google Scholar 

  17. T.J. Barrett, M. Knezevic, Comput. Methods Appl. Mech. Eng. 354, 245 (2019). https://doi.org/10.1016/j.cma.2019.05.035

    Article  Google Scholar 

  18. T.J. Barrett, R.J. McCabe, D.W. Brown, B. Clausen, S.C. Vogel, M. Knezevic, J. Mech. Phys. Solids 138, 103924 (2020). https://doi.org/10.1016/j.jmps.2020.103924

    Article  CAS  Google Scholar 

  19. S. Berbenni, V. Taupin, R.A. Lebensohn, J. Mech. Phys. Solids 135, 103808 (2020). https://doi.org/10.1016/j.jmps.2019.103808

    Article  Google Scholar 

  20. A. Eghtesad, M. Knezevic, Mater. Sci. Eng. A 803, 140478 (2021). https://doi.org/10.1016/j.msea.2020.140478

    Article  CAS  Google Scholar 

  21. A. Abel, Mater. Forum 10, 11 (1987). http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=0023314138&origin=inward.

  22. G.M. Castelluccio, D.L. McDowell, Int. J. Plasticity 98, 1 (2017). https://doi.org/10.1016/j.ijplas.2017.06.002

    Article  Google Scholar 

  23. Z. Feng, S.-Y. Yoon, J.-H. Choi, T.J. Barrett, M. Zecevic, F. Barlat, M. Knezevic, Mech. Mater. 148, 103422 (2020). https://doi.org/10.1016/j.mechmat.2020.103422

    Article  Google Scholar 

  24. S. Ghorbanpour, M. Zecevic, A. Kumar, M. Jahedi, J. Bicknell, L. Jorgensen, I.J. Beyerlein, M. Knezevic, Int. J. Plasticity 99, 162 (2017). https://doi.org/10.1016/j.ijplas.2017.09.006

    Article  CAS  Google Scholar 

  25. M. Zecevic, M. Knezevic, Int. J. Plasticity 72, 200 (2015). https://doi.org/10.1016/j.ijplas.2015.05.018

    Article  CAS  Google Scholar 

  26. M. Zecevic, Y.P. Korkolis, T. Kuwabara, M. Knezevic, J. Mech. Phys. Solids 96, 65 (2016). https://doi.org/10.1016/j.jmps.2016.07.003

    Article  CAS  Google Scholar 

  27. S. Jeunehomme, Ph.D. thesis, Ecole des Mines de Paris (1991)

  28. S. Allain, O. Bouaziz, Mater. Sci. Eng. A 496, 329 (2008). https://doi.org/10.1016/j.msea.2008.06.009

    Article  CAS  Google Scholar 

  29. M.W. Kapp, C. Kirchlechner, R. Pippan, G. Dehm, J. Mater. Res. 30, 791 (2015). https://doi.org/10.1557/jmr.2015.49

    Article  CAS  Google Scholar 

  30. S. Gao, K. Yoshino, D. Terada, Y. Kaneko, N. Tsuji, Scripta Mater. 211, 114503 (2022). https://doi.org/10.1016/j.scriptamat.2022.114503

    Article  CAS  Google Scholar 

  31. J. Gil Sevillano, F. de Las Cuevas, Mater. Sci. Technol. 35, 409 (2019). https://doi.org/10.1080/02670836.2019.1567044

    Article  CAS  Google Scholar 

  32. O. Bouaziz, D. Barbier, J.D. Embury, G. Badinier, Phil. Mag. 93, 247 (2013). https://doi.org/10.1080/14786435.2012.704419

    Article  CAS  Google Scholar 

  33. O. Bouaziz, J. Moon, H.S. Kim, Y. Estrin, Scripta Mater. 191, 107 (2021). https://doi.org/10.1016/j.scriptamat.2020.09.022

    Article  CAS  Google Scholar 

  34. F.A. McClintock, A.S. Argon (eds.), Mechanical Behavior of Materials (Addison-Wesley, Reading, 1966), p. 277

  35. E. Orowan, Causes and effects of internal stresses, in Proceedings of the Symposium on Internal Stresses and Fatigue in Metals, Detroit and Warren, ed. by G.M. Rassweiler, W.L. Grube, (Elsevier, Amsterdam, 1958) pp. 59–80.

  36. M.F. Ashby, Phil. Mag. A 21, 399 (1970). https://doi.org/10.1080/14786437008238426

    Article  CAS  Google Scholar 

  37. L.M. Brown, W.M. Stobbs, Phil. Mag. A 23, 1201 (1971). https://doi.org/10.1080/14786437108217406

    Article  CAS  Google Scholar 

  38. O. Bouaziz, Y. Bréchet, Scripta Mater. 60, 366 (2009). https://doi.org/10.1016/j.scriptamat.2008.11.002

    Article  CAS  Google Scholar 

  39. H. Mughrabi, Acta Metall. 31, 1367 (1983). https://doi.org/10.1016/0001-6160(83)90007-X

    Article  CAS  Google Scholar 

  40. Y. Estrin, L.S. Tóth, A. Molinari, Y. Bréchet, Acta Mater. 46, 5509 (1998). https://doi.org/10.1016/S1359-6454(98)00196-7

    Article  CAS  Google Scholar 

  41. A. Vinogradov, Y. Estrin, A. Molotnikov, Unpublished results.

  42. L. Li, L. Shen, G. Proust, Appl. Mech. Mater. 553, 22 (2014). https://doi.org/10.4028/www.scientific.net/AMM.553.22

    Article  CAS  Google Scholar 

  43. B.J. Schäfer, X. Song, P. Sonnweber-Ribic, H. Hassan, A. Hartmaier, Metals 9, 368 (2019). https://doi.org/10.3390/met9030368

    Article  CAS  Google Scholar 

  44. G.Z. Voyiadjis, S.H. Hoseini, G.H. Farrahi, J. Eng. Mater. Technol. 135, 011002 (2013). https://doi.org/10.1115/1.4007386

    Article  Google Scholar 

  45. B. Holmedal, Int. J. Plasticity 123, 86 (2019). https://doi.org/10.1016/j.ijplas.2019.07.009

    Article  Google Scholar 

  46. P.J. Armstrong, C.O. Frederick, A mathematical representation of multiaxial Bauschinger effect, in CEGB Internal research report in Materials at High Temperatures, Vol. 24, pp. 1–26 (1966)

  47. J. Lemaitre, J.-L. Chaboche, Mechanics of Solid Materials (Cambridge University Press, Cambridge,1990)

  48. W. Prager, J. Appl. Mech. 23, 493 (1956). https://doi.org/10.1115/1.4011389

    Article  Google Scholar 

  49. E. Melan, Ingenieur-Archiv 9, 116 (1938). https://doi.org/10.1007/BF02084409

    Article  Google Scholar 

  50. B. Berisha, P. Hora, A. Wahlen, L. Tong, Int. J. Plasticity 26, 126 (2009). https://doi.org/10.1016/j.ijplas.2009.06.001

    Article  CAS  Google Scholar 

  51. T. J. R. Hughes, in Theoretical Foundations for Large Scale Computations of Nonlinear Material Behaviour, ed. by S. Nemat-Nasser, R. Asaro, G. Hegemier, Martinus Nijhoff. Mechanics of elastic and inelastic solids 6, vol 6 (Springer, Dordrecht, 1984). https://doi.org/10.1007/978-94-009-6213-2_3.

  52. E. Voce, J. Inst. Met. 74, 537 (1948)

    Article  CAS  Google Scholar 

  53. M.F. Horstemeyer, D.J. Bammann, Int. J. Plasticity 26, 1310 (2010). https://doi.org/10.1016/j.ijplas.2010.06.005

    Article  CAS  Google Scholar 

  54. Y. Estrin, Dislocation-density-related constitutive modelling, in Unified Constitutive Laws of Plastic Deformation, ed. by A.S. Krausz, K. Krausz (Academic Press, New York, 1996), pp. 69–106

  55. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375–377, 213 (2004). https://doi.org/10.1016/j.msea.2003.10.257

    Article  CAS  Google Scholar 

  56. Z. Li, C.C. Tasan, K.G. Pradeep, D. Raabe, Acta Mater. 131, 323 (2017). https://doi.org/10.1016/j.actamat.2017.03.069

    Article  CAS  Google Scholar 

  57. G. Laplanche, J. Bonneville, C. Varvenne, W.A. Curtin, E.P. George, Acta Mater. 143, 257 (2018). https://doi.org/10.1016/j.actamat.2017.10.014

    Article  CAS  Google Scholar 

  58. O. Bouaziz, S. Allain, C. Scott, Scripta Mater. 58, 484 (2008). https://doi.org/10.1016/j.scriptamat.2007.10.050

    Article  CAS  Google Scholar 

  59. M. Yang, Y. Pan, F. Yuan, Y. Zhu, X. Wu, Mater. Res. Lett. 4, 145 (2016). https://doi.org/10.1080/21663831.2016.1153004

    Article  CAS  Google Scholar 

  60. Johann Bauschinger 1834–1893, Holz als Roh- und Werkstoff - European Journal of Wood and Wood Industries 30, 239 (1972) https://doi.org/10.1007/BF02617596

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2021R1A2C3006662). Useful comments of Prof. Ron Armstrong on the manuscript are gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Olivier Bouaziz or Hyoung Seop Kim.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouaziz, O., Kim, H.S., Lee, J. et al. Bauschinger Effect or Kinematic Hardening: Bridging Microstructure and Continuum Mechanics. Met. Mater. Int. 29, 280–292 (2023). https://doi.org/10.1007/s12540-022-01227-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01227-3

Keywords

Navigation